

NX CAD Electrical Routing Wiring Harness Advance Course Instructor-Led Online Training

Course Curriculum (Duration: Lectures: 20 Hrs. / Practicals: 20 Hrs)

Chapter 1: UG NX Advanced Electrical Routing

- 1.1] Create a new part for the wiring harness subassembly
- 1.2] Import an existing connection and component list into the harness subassembly
- 1.3] Manually WAVE link Device Ports into the harness subassembly or let NX automatically link the ports as you select the devices to route to
- 1.4] Using Place Part, attach and lock qualified components to the WAVE linked ports in the harness subassembly
- 1.5] Assign the unique identifiers to the components using the component list functionality
- 1.6] Create wire paths using Routing Electrical path creation tools. As you generate paths, some automatic WAVE linking may occur
- 1.7] Route the wires using the connection list functionality
- 1.8] Create terminal wires if required
- 1.9] Add overstock, such as insulating sleeving
- 1.10] Perform clearance analysis using assemblies software
- 1.11] Run batch design rule checks (if available)
- 1.12] Correct the design as needed
- 1.13] Analyze wiring connectivity
- 1.14] Export the connection list:

This step is necessary if you need to pass the connection list back to a schematics package in order to back annotate the schematic drawing with wire lengths, or to pass the information to an Electrical analysis package.

Chapter 2: Electrical Routing assembly models with types of harnesses

2.1] Assembly making

- a. You can perform an analysis and display the results in the Clearance Browser using the interactive analysis mode. Use this mode to:
- b. Have an overall look at the interferences in your assembly.
- c. Isolate an individual interference for a closer look.
- d. Modify how the interferences are displayed.
- e. Define how to perform further analyses.

2.2] Adding and modifying connectors

- a. Create types of connectors
- b. Taking standard connectors
- c. Modify the properties of the hardware's
- d. Develop new hardware's

2.3] Creating harnesses

- e. Create high voltage harnesses
- f. Types of color code cables
- g. Adding colors to the cables and properties
- h. Route manually the cables through wire ways

2.4] Live Case study with existing models

- a. Study the existing assemblies
- b. Recreate the assemblies
- c. Create the connection points for various connectors
- d. Call the connectors into the assembly
- e. Auto route and manual route the cables

2.5] Large assembly electrical routing

- a. Study the circuit diagram and follow the same procedure
- b. Identify the components
- c. Reroute the cables and harnesses
- d. Identify the unique id's of the ports and connectors
- e. Place all the hardware and electrical components.
- f. Create connection points for other components

2. 6] Interactive check

- f. You can perform an analysis and display the results in the Clearance Browser using the interactive analysis mode. Use this mode to:
- g. Have an overall look at the interferences in your assembly.
- h. Isolate an individual interference for a closer look.
- i. Modify how the interferences are displayed.
- j. Define how to perform further analyses.

Chapter 3: Form board/ Harness drawings

3.1] Form board drawings

- a. Form board allows Routing Electrical users to create a manufacturing drawing for Routing Electrical harnesses.
- b. A form board model is a flattened representation of a 3D electrical model of a cable or wiring harness. An electrical model appears in a form board as if you took it out of 3D space and placed onto a 2D plane and pulled until it becomes straight.

3.2] Exercise and Workshops

IFS Academy, Pune T:+91-20-2543 0338, M: +91-98228 49628, +91-99224 40102, E: training@ifsacademy.org,

Visit Us At: www.ifsacademy.org